
REPORT DOCUMENTATION PAGE
Form Approved

OBM No. 0704-0188

Public reporting burden for this collection ot information Is estimated to average 1 hour per response, including the time for reviewing instructions.^se^cranj| eMsnng oaia^ouru*,
gatherirwand maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this bu den onany f^r^P^0''"^1^'0"
of inforrnaion, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis
Hiahwav Suite 1204 Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

TWO

3. REPORT TYPE AND DATES COVERED

Contract Report

4. TITLE AND SUBTITLE

A Scalable Implementation of the NRL Layered Ocean Model

5. FUNDING NUMBERS

Job Order No.

Program Element No. 062435N

Project No.

Task No.

Accession No.

6. AUTHOR(S)

Alan J. Wallcraft and Daniel R. Moore

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Planning Systems, Inc.
Slidell, Louisiana 70458

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NRL/CR/7323--96-0006

11. SUPPLEMENTARY NOTES

Contract No. N00014-92-D-6008

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes the portable scalable implementation of the NRL Layered Ocean Model (NLOM). Scalability is based
primarily on the tiled data parallel parallel programming paradigm. This is sufficiently general that the actual technique used on
a given machine to obtain scalability can be selected at compile time from: (i) data parallel, (ii) SPMD message passing, (iii)
autotasking, or (iv) SPMD message passing between multi-processor autotasked systems. The code is thus portable onto all
machine types likely to be used by ocean modelers.

19971010 038
14. SUBJECT TERMS

ocean modeling, scalability, data parallel, message passing, and autotasking

15. NUMBER OF PAGES

34

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

I Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500

HC QUALITY mSrEGHi 'iUli «S

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-1B
298-102

0 1
4

NAVAL RESEARCH LABORATORY

Washington, D.C 20375-5320

NRL Report: CR 7323-96-6005
0OO&

A Scalable Implementation of the NRL Layered Ocean Model

Alan J. Wallcraft and Daniel R. Moore
Planning Systems, Inc.

Prepared for the Ocean Dynamics & Prediction Branch
Contract # N0014 - 92 - D - 6008

(Printed April 3, 1997)

Abstract

This report describes the portable scalable implementation of the NRL
Layered Ocean Model (NLOM). Scalability is based primarily on the tiled
data parallel parallel programming paradigm. This is sufficiently general that
the actual technique used on a given machine to obtain scalability can be
selected at compile time from: (i) data parallel, (ii) SPMD message passing,
(iii) autotasking, or (iv) SPMD message passing between multi-processor au-
totasked systems. The code is thus portable onto all machine types likely to
be used by ocean modelers.

Subject Terms

Ocean Model, Scalable, Data Parallel, Message Passing, Autotasking

PEG QXMLmr ntrcPEnircD a
Approved for public release; distribution unlimited

CONTENTS

EXECUTIVE SUMMARY E-l

1. INTRODUCTION 1

2. DISTRIBUTED MEMORY PROGRAMMING STYLES 2

2.1 Data Parallel 2
2.2 Tiled Message Passing 3
2.3 Tiled Data Parallel 5

3. NLOM IMPLEMENTATION 6

3.1 Example of Autotasking Code 6
3.2 Example of Tiled Data Parallel Code 7
3.3 Communication Subroutines 11
3.4 Parallel I/O 18
3.5 Serial Optimizations 19
3.6 Cache Management 21
3.7 Parallelizing the Capacitance Matrix Technique 23

4. NLOM PERFORMANCE 25

5. SUMMARY 30

6. ACKNOWLEDGEMENTS 30

7. REFERENCES 30

IV

EXECUTIVE SUMMARY

This report describes the portable scalable implementation of the NRL Layered Ocean Model
(NLOM). Scalability is based primarily on the tiled data parallel parallel programming paradigm.
This is sufficiently general that the actual technique used on a given machine to obtain scalability
can be selected at compile time from: (i) data parallel, (ii) SPMD message passing, (iii) autotasking,
or (iv) SPMD message passing between multi-processor autotasked systems. The code is thus
portable onto all machine types likely to be used by ocean modelers.

Techniques generally applicable to ocean models on distributed memory machines are first in-
troduced using a simple example. This is extended to a practical case by examining the actual
source code for one subroutine from the original (autotasked) and scalable NLOM implementa-
tions. These are very similar, because distributed memory aspects are encapsulated in a suite of
communication subroutines. The three versions (data parallel, autotasked, message passing) of a
representative communication subroutine are presented and discussed. The original NLOM im-
plementation was primarily optimized for vector parallel systems. Several new optimizations have
been added to the scalable implementation to allow for the relatively small cache and low memory
bandwidth of RISC-based systems.

The high performance of NLOM depends critically on the use of a semi-implicit time step, and
solving the consequent external gravity mode Helmholtz's equation using the Capacitance Matrix
Technique (CMT). The scalable CMT implementation is described, including the "pipelining"
method used to obtain scalability without sacrificing numerical repeatability no matter how many
processors are involved.

There are currently no standard methods for implementing general parallel I/O. The scalable
NLOM code uses separate files for "scalar" and "array" data. This allows a degree of parallel I/O
to array files on some machines, while preserving full portability between machines.

The scalable NLOM implementation has achieved its design goals of running exactly the same
model source code and model data files on a wide range of computer systems from many vendors.
Times from actual practical model runs presented in this report demonstrate good scalability across
the range of processor complexes available within DoD today. As larger machines become available,
problem sizes (i.e. model resolution) will increase and scalability should be possible up to at least
2048 processors.

E-l

A Scalable Implementation of the NRL Layered Ocean Model

1. INTRODUCTION

The NRL Layered Ocean Model, NLOM, has been under continuous development for 20 years
[8], [15], [12]. The Users Guide [15] describes the model at the time the guide was released, and is
still the primary reference for the model formulation. A new implementation of horizontal diffusion
and a discussion of the model formulation in spherical coordinates can be found in Moore and
Wallcraft [12]. Here we describe the techniques used to make the model's implementation (source
code) portable to all major computer architectures and to several scalable programming styles.
Many of the techniques described will be applicable to other ocean models.

The original implementation was targeted to SMP (shared memory parallel) systems, and in
particular to PVP (parallel vector processors) where each CPU is a vector processor. This was
the dominant supercomputer architecture throughout the 1980's, and is still used in machines such
as Cray's C90 today. The model was written in standard Fortran 77 using a coding style that
allowed compilers to automatically run loop nests in parallel across multiple processors, while still
automatically vectorizing inner loops. The compiler technology involved is known as autotasking
in Cray compilers. It is available in the Fortran compilers from all major vendors of SMP systems,
and this has allowed the original ocean model implementation to run efficiently on a wide range of
shared memory machines, from workstations to supercomputers.

SMP systems are limited by the need to have uniform access from each processor to each
element in memory, which is only cost effectively implementable for a maximum of 16, or perhaps
32, processors. Distributed memory architectures make memory local to the processors. This
allows scalability to hundreds of processors, but at the expense of all or part of hardware support
for the uniform shared memory programming style. On non-uniform memory access (NUMA)
systems, all memory is accessible (without remote processor involvement) from all processors, but
access speeds are faster (perhaps much faster) for local memory. Many distributed systems do not
implement a shared memory at all, requiring messages to be transfered over a network to access
another processor's memory typically with the cooperation of the remote processor. It has so far
proved impossible, in general, to take existing "dusty deck" shared memory source code and have a
compiler automatically produce an efficient distributed memory version. This is the case even if the
original source was optimized for SMP systems and the target is a cluster of SMP machines with
a NUMA global shared memory, and these are the most similar shared and distributed memory
designs. The problem is that compilers are best at local optimizations (e.g. DO-loop or subroutine
level), but efficient use of a distributed memory requires global decisions about how memory is
used.

Since distributed memory systems are almost certain to be the fastest available for ocean

Manuscript approved to be reviewed.

Wallcraft and Moore

modeling over the next 10 years, an implementation of NLOM that can run efficiently on these
machines has been produced. Just as the original vector/parallel implementation ran with reason-
able efficiency on any single processor or SMP system, an important design goal for the scalable
implementation is that it be reasonably efficient on any computer system likely to be used for ocean
modeling: workstations, workstation clusters, SMP systems, SMP clusters, vector, vector-parallel,
and massively parallel computer systems. This allows a single source code to be used across all
machine types, greatly simplifying maintenance and the development of new features.

2. DISTRIBUTED MEMORY PROGRAMMING STYLES

2.1 Data Parallel

One approach for distributed memory machines that retains the idea of a global shared memory
is data parallel programming. High Performance Fortran (HPF) is an extension to Fortran 90
implementing the data parallel approach [9]. It consists of a standard set of functions, compiler
directives, and a very few language extensions. The language extensions have been included in
Fortran 95, so a HPF program is also a Fortran 95 program (i.e. is portable to any machine with a
Fortran 95 compiler). HPF is based on CM Fortran, which is a data parallel language for the CM5.
The first distributed memory implementation of NLOM was written in CM Fortran, and could
also run on any machine with a Fortran 90 compiler. The code was completely different from the
original SMP Fortran 77 version, because CM Fortran requires all parallel operations be expressed
using Fortran 90 array expressions. CM Fortran also requires the addition of directives that tell the
compiler how to layout arrays across the distributed memory. These directives do not change the
meaning of the program, but they have a very large effect on performance. Optimization for the
CM5 (or any data parallel machine/language) is largely involved with getting memory layout right.
In principle, the required array syntax could be automatically generated from the Fortran 77 model
code. However, the current generation of tools cannot do this, despite the basic self similarity of
finite difference codes. Consider the following simple code fragment:

REAL A(IH+1,JH),DA(IH+1,JH),DX

INTEGER I,J

DO J= l.JH

DO 1= l.IH
DA(I,J) = DX*(A(I+1,J) - A(I,J))

ENDDO; ENDDO

The arrays A and DA have been extended by a one column "halo" to allow a clean implementation
of a periodic boundary. On entry A(IH+1,:) must be identical to A(l,:), and at some later phase
in the program this condition would be explicitly applied to DA also. The equivalent CM Fortran
is:

REAL A(IH,JH),DA(IH,JH),DX

CMF$ LAYOUT A(:NEWS,:NEWS),DA(:NEWS,:NEWS)
DA = DX*(CSHIFT(A,SHIFT=+1,DIM=1) - A)

Automatic converters might be able to handle this simple example, but in an actual code the use
of a halo to handle periodic boundaries would not be correctly converted to a CSHIFT on an array
without a halo. The arrays A and DA are no longer extended by one column, because the CSHIFT
(periodic, or circular, shift) array operation is a one to one mapping to periodic boundary conditions.

Scalable NLOM

The LAYOUT directive distributes each 2-D array across a 2-D grid of processors, i.e. if the grid
is MP by NP, the M,N processor contains the sub-array A(M0+1:M0+IHP, N0+1:N0+JHP) where
IHP=IH/MP, JHP=JH/NP, M0=(M-1)*IHP and N0=(N-1)*JHP. Under the data parallel approach,
the owner of the assigned value calculates that value and off-chip values are copied as required.
Thus the CSHIFT operation involves communication, and an advantage of using CSHIFT or EOSHIFT
in a data parallel code is that it makes this communication explicit. The data parallel programming
model works as if all non-array operations are performed on one processor and the result broadcast
to all others. A data parallel compiler can have each processor simultaneously calculate such values
instead, providing the effect is the same as broadcasting the result from a single processor.

The data parallel approach is similar to autotasking, in that parallelization is a local process.
This implies that autotasking compilers could certainly be extended to parallelize arbitrary array
expressions. Therefore, HPF (or CM Fortran) codes are in principle portable to almost any machine
design. The CM Fortran implementation of NLOM is in fact a legal Fortran 90 code, so it can be
run on a Cray C90 (say) or a workstation with a Fortran 90 compiler. The problem with using
HPF for a portable code is efficiency:

• HPF requires communication for almost every array expression.

• Different LAYOUT configurations may be optimal on different machines, i.e. difficult to write
portable optimized HPF.

• Data parallel codes tend to use many array temporaries.

• Data parallel codes are typically written to be scalable to a large number of processors. This
almost always involves additional floating point operations, and these reduce performance on
machines with a small number of processors.

• A single nested DO-loop is typically equivalent to several array operations, reducing optimiza-
tion opertunities.

• Current Fortran 90 compilers produce better code for DO loops than for array expressions.

Some of these limitations will be significantly reduced as compilers improve. On SMP machines,
a smart compiler might eventually be able to make a collection of data parallel array expressions as
efficient as a similar set of nested DO loops. However, the data parallel version will probably still
require more memory. On distributed memory machines, a simplistic HPF compiler only works well
if remote memory access is very fast (as it can be on a data parallel machine such as the CM5, or
on most NUMA systems). More sophisticated compilers can try to cache selected remote memory
values to reduce network traffic.

After producing a working data parallel version of NLOM [14], it became clear that it was too
slow and memory hungry to replace the existing version on SMP systems. The data parallel version
worked well on the CM5, but maintaining two separate versions of an ocean model that is itself
under continuous development was a serious maintenance headache. Moreover, HPF compilers for
new distributed memory systems (such as the T3D) were incomplete and not sufficiently robust to
allow easy and early migration to each new system.

2.2 Tiled Message Passing

Message passing libraries can be considered the assembly language of distributed memory
machines. For ocean models, message passing is typically used via the domain decomposition SPMD

Wallcraft and Moore

(Single Program Multiple Data) programming style. The domain is divided into approximately
equally sized pieces, one per processor, and each processor runs the same program over its piece of
the domain, calling a message passing library to obtain values from other sub-domains. All scalar
calculations, i.e. those not acting directly on model domain fields, are calculated separately on
each processor. This implies that in practice SPMD must use a homogeneous set of processors,
otherwise the scalar calculations could diverge. Efficiency and program transparency is enhanced
by including a halo (or fake zone, or ghost points) of nearby points, which allows existing finite
difference code to be used almost without change provided the halo is updated, via message passing,
at appropriate intervals. Consider our simple code fragment:

REAL A(IH+1,JH),DA(IH+1,JH),DX

INTEGER I,J

DO J= 1,JH

DO 1= i.IH
DA(I.J) = DX*(A(I+1,J) - A(I,J))

ENDDO; ENDDO

To convert to domain decomposition, add a halo on all sides and have the array otherwise extend
over the sub domain only:

REAL A(0:IHP+1,0:JHP+1),DA(0:IHP+1,0:JHP+1),DX

INTEGER I,J

DO J= l.JHP

DO 1= l.IHP
DA(I,J) = DX*(A(I+1,J) - A(I,J))

ENDDO; ENDDO

A 2-D, MP by NP, grid of processors are all running this identical program, with IHP=IH/MP and
JHP=JH/NP. Provided the halo is up to date, the code fragment calculates the required values over
the subdomain owned by this processor. Note that no knowledge is required about which subdomain
is being calculated. This is all handled by the message passing and I/O routines which would need
to be added to the original code.

This is actually a special case of domain decomposition, tiling, that is applicable to all finite
difference ocean models. The sub-regions are rectangular and halos have a simple mapping onto
nearby processors. If the tiles are all the same size (as they are here) this gives a mapping of arrays
to processors that is very similar to the data parallel approach. Data parallel codes don't have to
explicitly include a halo, but halos (invisible to the programmer) are one technique a data parallel
compiler can use to cache frequently accessed off-processor memory locations.

Converting an existing autotasked code to use the tiled message passing approach has a mini-
mal effect on SMP performance, since when compiled for a single tile covering the entire region the
original code is effectively used except for a few calls to update the tile halos. Note that in the single
tile mode, halo updates do not involve message passing and can include periodic boundary condi-
tions. However, if an existing code cannot autotask efficiently, then the only SMP parallelization
option with this approach is to message pass between multiple tiles on the same SMP machine, and
current message passing libraries are not efficient when running in a multi-user SMP environment.

Overall, tiled message passing is a viable approach to portability. Certainly more viable today
than the data parallel approach. It does have some disadvantages:

Scalable NLOM

• Message passing is inefficient on data parallel machines, such as the CM5.

• All non-local operations require a subroutine call, e.g. AIJ = A(I,J) becomes
CALL XCEGETCAIJ, A,I, J), and XCEGET must be coded using message passing.

• Debugging is difficult. In particular, the correctness of a single tile code does not imply that the
corresponding multi-tile code is correct. Data parallel codes can in principle be fully debugged
on a single processor.

• Message passing is not efficient on a multi-user SMP system, although autotasking may reduce
the importance of this fact.

2.3 Tiled Data Parallel

It is possibile to combine the tiled message passing and data parallel methods. Consider our
simple code fragment:

REAL A(IH+1,JH),DA(IH+1,JH),DX

INTEGER I,J

DO J= 1,JH

DO 1= i.IH
DA(I,J) = DX*(A(I+1,J) - A(I,J))

ENDDO; ENDDO

In tiled data parallel form, for CM Fortran, this becomes:

REAL DX
REAL A(0:IHP+1,0:JHP+1,MP,NP)
REAL DA(0:IHP+1,0:JHP+1,MP,NP)

CMF$ LAYOUT A(:SERIAL,:SERIAL,:NEWS,:NEWS)

CMF$ LAYOUT DA(:SERIAL,:SERIAL,:NEWS,:NEWS)

INTEGER I.J.M.N

DO N= 1,NP

DO M= l.MP
DO J= l.JHP

DO 1= 1,IHP
DA(I,J,M,N) = DX*(A(I+1,J,M,N) - A(I,J,M,N))

ENDDO; ENDDO;

ENDDO; ENDDO;

If MP and NP are both 1, this is functionally identical to the message passing code fragment. If
MPxNP represents the number of processors (or, on the CM5, the number of vector units), this is
data parallel and the compiler does not need to generate any off-chip communication. In principle,
a tiled data parallel code should be as fast or faster than the corresponding native data parallel
code, because it does less communication unless the compiler is caching off-chip values. However,
the speed of a tiled data parallel code depends on how well the compiler handles serial, i.e. on-chip,
operations and CM Fortran's serial optimizations are currently quite limited. Since CM Fortran
requires array syntax, the CMAX preprocessor must be invoked on the CM5, as part of the compile
phase, to convert the DO-loop nest to an array expression:

DA(1:IHP,1:JHP,:,:) = DX*(A(2:IHP+1,1:JHP,:,:) -
& A(1:IHP, 1:JHP,:,:))

Wallcraft and Moore

This is unnecessary in HPF, which will directly parallelize the DO loops.

The tiled data parallel programming style adds more boiler plate to the original code, to
handle the tile number dimensions, but can use message passing to update halos etcetera and is
in every way functionally equivalent to the standard tiled message passing style. It can also run
on data parallel machines/compilers, using data parallel constructs in communication subroutines.
Disadvantages include:

• Boiler plate reduces clarity, when compared to either native data parallel or tiled message
passing codes.

• All non-local operations require a subroutine call, e.g. AIJ = A(I,J) becomes
CALL XCEGET(AIJ, A,I, J), and XCEGET must be coded using both data parallel and message
passing.

On SMP machines autotasking can occur at the block level (outermost loop) even if the original
code did not autotask, and the multi-tile code can be debugged on a single processor (except for
the message passing communication routines).

The NLOM is now implemented in the tiled data parallel style, and this single code has replaced
the original separate SMP and data parallel versions.

3. NLOM IMPLEMENTATION

3.1 Example of Autotasking Code

Consider a single subroutine, used as part of the pressure gradient calculation, from the original
NLOM implementation.

SUBROUTINE MHMVP0(DV, PTO.HHYTO, QTDTDY)

IMPLICIT NONE

INTEGER IH.JH
PARAMETER (IH=515, JH=287)

C

REAL QTDTDY

REAL DV(IH,JH),PT0(IH,JH),HHYT0(IH,JH)

C

INTEGER IFU,IFV,IFH,IFS,ILU,ILV,ILH,ILS

COMMON/ZILOOP/ IFU(JH),IFV(JH),IFH(JH),IFS(JH),

& ILU(JH),ILV(JH),ILH(JH),ILS(JH)

SAVE /ZILOOP/

C

C V MOMENTUM EQUATION - PRESSURE GRADIENT TERM.

C
INTEGER I,J

DO J= 2.JH-2

DO 1= IFV(J),ILV(J)

DV(I,J) = DV(I,J) -
k QTDTDY*(PTO(I,J+l) - PT0(I,J))*HHYT0(I,J)

Scalable NLOM

ENDDO; ENDDO

RETURN

END

The subroutine is acting on a single layer of a multi-layer model, so the subroutine would be called
once for each layer with only horizontal slices of the full arrays passed via the argument list. All low
level routines in the ocean model act this way. It allows workspace arrays, e.g. DV and HHYTO,
to be two dimensional. A typical call to this subroutine might be:

CALL MHMVPOCDV, P(1,1,NT0,K),HHYTO, QTDTDY)

where NTO represents the time level and K represent the layer. This takes advantage of Fortran 77's
ability to treat an array element as the starting point of an array slice. In Fortran 90, and CM
Fortran, the slice would be made explicit:

CALL MHMVPO(DV, P(:,:,NTO,K),HHYTO, QTDTDY)

The subroutine is configured to vectorize the I-loop and autotask the J-loop. The inner loop does
not cover the full array. Instead, it skips all calculations on [1:IFV(J)-1, J] and [ILV(J)+1:IH, J],
because these are all land points. This technique is known as shrinkwrapping [2]. Note that there
may well be land points within [IFV(J) : ILV(J) , J], and calculations are performed at such points.
The boundary conditions imposed at the end of each time step will allow for land points, and
therefore the presence of absence of shrinkwrapping does not affect correctness. The variable inner
loop extent slows down vectorization, and causes some load inbalance when autotasking (i.e. it
tends to reduce the substainable Mfiop/s rate). However, it is almost always a net win in overall
performance on SMP machines to shrinkwrap land, because the time saved by skipping calculations
is larger than the time lost by less efficient vectorization and parallelization. The /ZILOOP/ COMMON
contains four sets of shrinkwrap limits, for the four separate staggered grids used in the model
calculation.

Some ocean models skip all land calculations, either by using a mask or by splitting the inner
loop into many loops that are land-free. This allows them to run with simplified boundary cor-
rections at the end of each time step, but they take a performance hit on every finite difference
calculation (particularly on vector machines). NLOM typically spends less than 5% of its time in
boundary routines, and this is easily made up for by increased finite difference code performance.

3.2 Example of Tiled Data Parallel Code

Portability often requires different code to be executed on different machine types. Since
the code for machine X may not even be legal Fortran syntax on machine Y, the appropriate
code fragment needs to be selected before the Fortran compiler sees the source code. The C
preprocessor, cpp, is an integral part of standard C and, among other things, allows conditional
compilation. There are alternatives, but cpp is commonly used as a Fortran preprocessor. In fact,
many Fortran compilers follow the convention that files ending in .F or .F90 are first passed through
the C preprocessor before entering the standard compilation phases. Macro subsitution, i.e. the
replacement of one text string with another, is also a feature of cpp that can be useful in Fortran
programs, although it sometimes produces counter-intuitive results. NLOM makes extensive use of
cpp capabilities. The following are a set of global C preprocessor macros, that may be referenced
by all NLOM subroutines.

Wallcraft and Moore

/* C-preprocessor macros for customizing the ocean model for a computer */

/* Since f77 uses all UPPERCASE, macros use all lowercase */

/* region size; rich in powers of 2 */

define ih 512

define jh 288

#if defined(spmd)
/* generic SPMD message passing version; ip=jp=l, no. proc = ipr*jpr */

define ip 1

define jp 1

define ipr 4

define jpr 4

#elif defined(hpf)

/* HPF data parallel version; no. proc = ip*jp */

define ip 8

define jp 4

#elif defined(cm5)
/* CM5 data parallel version; CMAX and CM Fortran; no. proc = ip*jp/4 */

define ip 16

define jp 8

#elif defined(thread)
/* Generic autotasked shared memory version; parallelize on jp */

define ip 1

define jp 16
define shrinkwrap

#else
/* single node or shared memory version; parallelize on jh */

define ip 1

define jp 1

define shrinkwrap

#endif

#if defined(ipr)

/* message passing tile size, IP=JP=1 */

define ihp IH/ipr

define jhp JH/jpr

#else

/* standard tile size */

define ihp IH/IP

define jhp JH/JP

#endif

#if defined(hpf)

/* HPF data parallel compiler directives */

define layout_s2b2(a) !HPF$ DISTRIBUTE a(*,*,BLOCK,BLOCK)

#elif defined(cm5)

Scalable NLOM

/* CM5 data parallel compiler directives */

define layout_s2b2(a) CMF$ LAYOUT a(:SERIAL,:SERIAL,:NEWS,:NEWS)

#else

define layout_s2b2(a)

#endif

#if defined(shrinkwrap)

/* skip most calculations over land */

define ilfm MLF(J,M,N)

define ilf ILF(J,M,N)

define ill ILL(J,M,N)

define illp MLL(J,M,N)

#else
/* do all calculations over land */

define ilfm 1

define ilf 2

define ill IHP+1

define illp IHP+2

#endif

Now the tiled pressure gradient subroutine, with the above macro definitions invoked via #include:

#include "MACROS.cpp"
SUBROUTINE MHMVP0(DV, PTO.HHYTO, QTDTDY)

IMPLICIT NONE

INTEGER IH,JH,IP,JP,IHP,JHP

PARAMETER (IH=ih, IP=ip, IHP=ihp)

PARAMETER (JH=jh, JP=jp, JHP=jhp)

C
REAL*4 QTDTDY
REAL*4 DV(IHP+3,JHP+3,IP,JP),

& PT0(IHP+3,JHP+3,IP,JP),HHYT0(IHP+3,JHP+3,IP,JP)

layout_s2b2(DV)

layout_s2b2(PT0)

layout_s2b2(HHYT0)

#if defined(shrinkwrap)

INTEGER ILF,ILL,MLF,MLL

COMMON/ZILOOP/ ILF(JHP+3,IP,JP),ILL(JHP+3,IP,JP),

& MLF(JHP+3,IP,JP),MLL(JHP+3,IP,JP)

SAVE /ZILOOP/

#endif

C

C V MOMENTUM EQUATION - PRESSURE GRADIENT TERM.

C
INTEGER I.J.M.N

DO N= 1,JP

DO M= 1,IP

DO J= 2.JHP+1

10 Wallcraft and Moore

DO 1= ilf.ill

DV(I,J,M,N) = DV(I,J,M,N) -

& QTDTDY*(PTO(I,J+l,M,N) - PT0(I,J,M,N))*

& HHYTO(I,J,M,N)

ENDDO; ENDDO;

ENDDO; ENDDO;

RETURN

END

This is more complicated than the example used to introduce the tiled data parallel technique. The
halo consists of one row/column on one side and two rows/columns on the other, because an extra
row/column is required to handle some operations on the staggered grids. Arrays are dimensioned
(1: IHP+3,1: JHP+3, IP, JP), rather than (0: IHP+2,0: JHP+2, IP, JP). The latter would simplify ar-
ray indexing, but Fortran compilers are not consistant in how they handle arrays that don't start
at (1,1,1,1), and so the less transparent dimensioning scheme is used to enhance portability. The
array size is slightly different than the original. IH no longer includes a halo to handle the global
ocean periodic boundary (i.e. 512 rather than 515), and JH has been increased to a value rich
in powers of two (288 vs 287, but much larger differences in size are possible). Array dimensions
rich in powers of two allow the number of equally sized tiles to be a large power of two, which is
optimal on some massively parallel machines. The non-standard data types REAL*4 and REAL*8
are used because they are the most portable way to get 32-bit REAL and 64-bit DOUBLE PRECISION.
Data parallel compiler directives for array layout are included via macros, which allows both CM
Fortran and HPF to be supported, and makes it possible to use different layouts on different
machines. On SPMD machines, there is no advantage to shrinkwrapping because overall speed
is controlled by the tile with the least land. When shrinkwrapping, "ilf ,ill" is expanded to
"ILF(J.M.N) ,ILL(J,M,N)" but otherwise it is "2.IHP+1". Tiling actually simplifies shrinkwrap-
ping. All four staggered grids have the same extent, specified in ILF and ILL, but intermediate
values may need to be calculated at halo points in which case MLF and/or MLL are used. Note that
in the shrinkwrapped case, MLF and MLL are not necessarily ILF-1 and ILL+1 because, for example,
a halo point can be a sea point even if the adjacent non-halo point is land.

The data parallel style requires all tiles to be the same size and there must be a one to one
mapping between tiles and a 2-D mesh of processors. This can lead to some inefficiencies in handling
land. On a SMP machine with relatively few processors, shrinkwrapped tiles don't all perform the
same amount of work. Better load balance can be obtained by using variable sized tiles, with tile
sizes chosen so that each tile contains about the same number of ocean points. NLOM reduces SMP
load inbalance by the alternative technique of having more tiles than processors, e.g. 12 tiles for 2,
or 3, or 4 processors. On a large message passing machine, some tiles will contain only land and
hence do no useful work. There is no need to include these empty tiles in the configuration at all.
This is relatively simple to implement, since the bulk of the model code does not know about other
tiles in any case. A tiled data parallel code in data parallel mode would have to include all tiles,
but some could still be missing when running the same code with message passing. NLOM does
not use this optimization, because the Capacitance Matrix Technique it uses to solve Helmholtz's
equations performs most calculations at all points and because parallel I/O is more difficult with
missing tiles. Also, some massively parallel machines have explicit support for, and run optimally
over, a 2-D grid of processors. On the other hand, most machines can handle missing tiles with
little communication overhead and the potential saving in time is significant (20% to 40% of points
are typically over land). NLOM may eventually be extended to skip land tiles, and this is certainly

Scalable NLOM _]}.

an optimization worth considering for any message passing ocean model. The scalable version of
the MICOM model [2], includes both the variable tile size and empty tile optimizations.

3.3 Communication Subroutines

The following are one line descriptions of all NLOM 2-D array communication routines:

XCAGET - convert an array from tiled to non-tiled layout

XCAPUT - convert an array from non-tiled to tiled layout

XCBGET - extract A(IA:IA+1,JA:JA+1) from a tiled array

XCEGET - extract the element A(IA,JA) from a tiled array

XCEWGT - extract the element A(IA,JA) from a tiled wind array

XCHALT - emergency stop all processes, called by one process

XCLGET - extract a line from a tiled array

XCLGT2 - extract a double line from a tiled array

XCLPUT - place a line of values into a tiled array

XCMASS - sum a tiled array
XCMAS1 - sum a sub-region of a tiled array

XCMINH - find the minimum value in a tiled array

XCNORM - find the L2 norm of a tiled array
XCRANG - find value and location of min and max from tiled array

XCSHFT - periodic shift of a tiled array
XCSPMD - initialize processor data structures, called once

XCSTOP - stop all processes, called by all processes

XCTILB - update a tiled array's halo
XCTILI - initialize for halo communication, called once

XCTILR - update a tiled array's halo, for red-black SOR

XCTILV - partial update of U,V tiled array's halos

XCTILW - update a tiled wind array's halo

With the exception of XCHALT, all these routines are assumed to be called with identical argument
lists by all processors when using SPMD message passing. This is not difficult to arrange, since by
default all routines are called in this manner in a SPMD run. Most communication routines act
as implicit barriers that synchronize processor state, i.e. when a processor exits a communication
routine at the very least all processors that must communicate with it have entered the same
subroutine. In addition the macro "barrier" is provided for cases where all processors must enter
a critical section of code before the first processor exits. This is implemented as a macro, rather
than a subroutine, to reduce overhead for autotasking and data parallel cases which never need
user invoked barriers (since the compiler synchronizes the processors, whenever necessary).

NLOM is designed to produce identical results on a given system no matter how many proces-
sors are used. This greatly improves robustness and simplifies debugging. Global sum routines
(XCMASS and XCNORM), cannot use the fast algorithms typically implemented by data parallel com-
pilers and by message passing libraries because these are not independant of the number of proces-
sors involved in the sum. Instead, a pipelining implementation is used. Pipelining is described in
the context of a tridiagonal solver in section 3.7.

Three versions of each communication subroutine are provided; one for message passing, one
for autotasking/data parallel using Fortran 77 syntax, and one for data parallel using Fortran 90

22 Wallcraß and Moore

syntax. The routine XCTILB will be used as an example. It updates the halo of a standard tiled
array. The Fortran 90 data parallel version just uses CSHIFT on a halo-only buffer:

SUBROUTINE XCTILB(A)

IMPLICIT NONE

INTEGER IH.JH

PARAMETER (IH=ih, JH=jh)

C
INTEGER IP,JP,IHP,JHP,IHP3,JHP3

PARAMETER (IP =ip, JP =jp)

PARAMETER (IHP =ihp, JHP =jhp)

PARAMETER (IHP3=ihp3, JHP3=jhp3)

C
REAL*4 A(IHP3,JHP3,IP,JP)

layout_s2b2(A)

C
C**********

c*
C 1) UPDATE TILE OVERLAP.

C*
c**********
C

INTRINSIC CSHIFT

C
REAL*4 AB1(IHP3,2,IP,JP),AB2(IHP3,1,IP,JP),

& AB3(2,JHP3,IP,JP),AB4(1,JHP3.IP,JP)

REAL*4 AB1S(IHP3,2,IP,JP),AB2S(IHP3,1,IP,JP),
& AB3S(2,JHP3,IP,JP),AB4S(1,JHP3,IP,JP)

layout_s2b2(ABl)
layout_s2b2(AB2)
layout_s2b2(AB3)
layout_s2b2(AB4)
layout_s2b2(ABlS)
layout_s2b2(AB2S)
layout_s2b2(AB3S)
layout_s2b2(AB4S)

C
AB2 = A(:,JHP+1:JHP+1,:,:)
AB1 = A(:, 2:3, :,:)
AB2S = CSHIFT(AB2,SHIFT=-1,DIM=4)
ABIS = CSHIFT(AB1,SHIFT=+1,DIM=4)

A(:, 1:1 ,:,:) = AB2S
A(:,JHP+2:JHP+3,:,:) = ABIS

C
AB4 = AUHP+1: IHP+1,:,:,:)
AB3 = A(2:3, :,:,:)
AB4S = CSHIFT(AB4,SHIFT=-1,DIM=3)
AB3S = CSHIFT(AB3,SHIFT=+1,DIM=3)

Scalable NLOM 13

A(1:1 ,:,:,:)= AB4S

A(IHP+2:IHP+3,:,:,:) = AB3S

RETURN

C END OF XCTILB.

END

All versions of XCTILB are doubly periodic, which simplifies programming logic. In cases with closed
boundaries, the periodic wrapped halos will contain land points, and therefore do no harm. The
autotasking XCTILB uses indirect addressing to get to the tile it requires:

SUBROUTINE XCTILB(A)

IMPLICIT NONE

INTEGER IH.JH
PARAMETER (IH=ih, JH=jh)

C
INTEGER IP,JP,IHP,JHP,IHP3,JHP3

PARAMETER (IP =ip, JP =jp)
PARAMETER (IHP =ihp, JHP =jhp)

PARAMETER (IHP3=ihp3, JHP3=jhp3)

C
REAL*4 A(IHP3,JHP3,IP,JP)

layout_s2b2(A)

C
INTEGER MM,MP,NM,NP

COMMON/ZCTILE/ MM(IP.JP),

& MP(IP.JP),
& NM(IP.JP),

& NP(IP.JP)

layout_b2(MM)

layout_b2(MP)
layout_b2(NM)

layout_b2(NP)
SAVE /ZCTILE/

C
C**********

c*
C 1) UPDATE TILE OVERLAP.

C
C 2) /ZCTILE/ MUST FIRST BE SET BY CALLING XCTILI.

C*
c**********
c

INTEGER I.J.M.N

C
DO 010 N= l.JP

DO 012 M= l.IP

DO 110 1= 2.IHP+1
A(I, 1,M,N) = A(I,JHP+1,M,NM(M,N))

A(I,JHP+2,M,H) = A(I, 2,M,NP(M,N))

14
Wallcraft and Moore

A(I,JHP+3,M,N) = A(I, 3,M,NP(M,N))

110 CONTINUE

012 CONTINUE

010 CONTINUE

C
DO 020 N= 1,JP

DO 022 M= l.IP

DO 210 J= l.JHP+3
A(1,J,M,N) = A(IHP+1,J,MM(M,N),N)
A(IHP+2,J,M,N) = A(2,J,MP(M,N),N)
A(IHP+3,J,M,N) = A(3,J,MP(M,N),N)

210 CONTINUE

022 CONTINUE
020 CONTINUE

RETURN
C END OF XCTILB.

END

Due to the periodic wrap, MM(1, :)=IP, MP(IP, :)=1, NM(: ,1)=JP, and NP(:. JP)=1. Finally, here

is the message passing version. ■' '.

SUBROUTINE XCTILB(A)

IMPLICIT NONE

INTEGER IH.JH
PARAMETER (IH=ih, JH=jh)

C
INTEGER IP,JP,IPR,JPR,IHP,JHP,IHP3,JHP3

PARAMETER (IP =ip, JP -jp)
PARAMETER (IPR =ipr, JPR =jpr)
PARAMETER (IHP =ihp, JHP =jhp)
PARAMETER (IHP3=ihp3, JHP3=jhp3) ;.

C

C

REAL*4 A(IHP3,JHP3,IP,JP)

INTEGER MPROC.NPROC

COMMON/CPROCI/ MPROC.NPROC

SAVE /CPROCI/ . ;

C **
INTEGER IDPROC
COMMON/CPROCD/ IDPROC(0:IPR+1,0:JPR+1)

SAVE /CPROCD/

C

c*
C 1) UPDATE TILE OVERLAP.

C*
C**********

c
INTEGER ILEN.JLEN

Scalable NLOM • . : —

PARAMETER (ILEN=IHP*IP, JLEN=(JHP+4)*JP)

C
C MAKE BUFFER SIZES A MULTIPLE OF 2.

C
REAL*4 AI(IHP,IP,6),AJ(JHP+4,JP.6)
SAVE AI.AJ

C
INTEGER I.J.M.N

C
header

C
IF (JP.NE.l) THEN

DO 110 N= l.JP-1
DO 111 M= 1,IP

-- DO 112 1= 2.IHP+1 r f
A(I, 1,M,N+1) = A(I,JHP+1,M,N)
A(I,JHP+2,M,N) = A(I, 2,M,N+1)
A(I,JHP+3,M,N) = A(I, 3.M.N+1)

112 CONTINUE
111 CONTINUE vv
110 CONTINUE

ENDIF
IF (JPR.EQ.l) THEN

DO 120 M= l.IP
DO 121 1= l.IHP

ACI+1, l.M.l) = A(I+i,JHP+i,M,JP)
A(I+1,JHP+2,M,JP) = ACI+1, 2,M,D- -
A(I+1,JHP+3,M,JP) = ACI+1, 3,M,1)

121 CONTINUE
120 CONTINUE \ ',

ELSE
DO 130 M= l.IP

DO 131 1= l.IHP
AKI.M.D = ACI+1, JHP+l.M.JP)
AICI,M,2) = ACI+1, 2,M,1)
AICI.M.3) = ACI+1, 3,M,1) ^

131 CONTINUE
130 CONTINUE

#if definedCmpi)
CALL MPI_SENDRECVC

+ AI(1,1,1), ILEN,mtyper,IDPROCCMPROC,NPROC+l), 9905,
+ AI(1,1,4), ILEN,mtyper,IDPROCCMPROC,NPROC-l), 9905,
+ MPI_COMM_WORLD, MPISTAT, MPIERR)

CALL MPI_SENDRECVC
+ AlCl,l,2),2*ILEN,mtyper,IDPR0CCMPR0C,NPR0C-l), 9906,
+ ' AI(1,1,5),2*ILEN,mtyper,IDPR0C(MPR0C,NPR0C+l), 9906,
+ MPI_C0MM_W0RLD, MPISTAT, MPIERR)

16
Wallcraft and Moore

#elif defined(shm)
barrier
CALL shmem_getr(AI(l,4),

+ AI(l.l), ILEN, IDPROC(MPROC.NPROC-l))
CALL shmem_getr(AI(l,5),

+ AI(1,2),2*ILEN, IDPR0C(MPR0C,NPR0C+D)

#endif
DO 140 M= 1,IP

DO 141 1= l.IHP
A(I+1, l.M.i) = AI(I,M,4)
A(I+1,JHP+2,M,JP) = AKI.M.5)
A(I+1,JHP+3,M,JP) = AI(I,M,6)

141 CONTINUE
140 CONTINUE

ENDIF 1 !

IF (IP.NE.l) THEN
DO 210 N= l.JP

DO 211 M= l.IP-1
DO 212 J= l.JHP+3 vv

A(1,J,M+1,N) = A(IHP+1,J,M, N)
A(IHP+2,J,M, N) = A(2,J,M+1,N)
A(IHP+3,J,M, N) = A(3,J,M+1,N)

212 CONTINUE
211 CONTINUE
210 CONTINUE

ENDIF
IF (IPR.EQ.l) THEN
DO 220 N= l.JP

DO 221 J= l.JHP+3 ''-\
A(i.J.l, N) - A(IHP+1,J,IP,N)
ACIHP+2,J,IP,N) = AC 2.J.1, N)
A(IHP+3,J,IP,N) = AC 3.J.1, N)

221 CONTINUE
220 CONTINUE

ELSE i \
DO 230 N= 1,JP

DO 231 J= l.JHP+3
AJCJ.N.l) = A(IHP+i,J,IP,N)
AJCJ,N,2) = AC 2,J,1, N)
AJCJ.N.3) = AC 3.J.1, N)

231 CONTINUE
230 CONTINUE

#if definedCmpi)
CALL MPI_SENDRECVC

+ AJU.1,1), JLEN,mtyper,IDPROCCMPROC+l,NPROC), 9907,
+ AJ(1,1,4), JLEN,mtyper,IDPROC(MPROC-l,NPROC), 9907,

Scalable NLOM ll

+ MPI_COMM_WORLD, MPISTAT, MPIERR)

CALL MPI_SENDRECV(
+ AJ(l,l,2),2*JLEN,mtyper,IDPR0C(MPR0C-l,NPR0C), 9908,

+ AJ(l,l,5),2*JLEN,mtyper,IDPR0C(MPR0C+l,NPR0C), 9908,

+ MPI_C0MM_W0RLD, MPISTAT, MPIERR)

#elif defined(shm)

barrier
CALL shmem_getr(AJ(l,l,4),

+ A J (1,1,1), JLEN,IDPR0C(MPR0C-l,NPR0O)
CALL shmem_getr(AJ(l,l,5),

+ AJ(1,1,2),2*JLEN,IDPROC(MPR0C+1,NPROC))

#endif
DO 240 N= 1,JP

DO 241 J= l.JHP+3
A(l.J.l, N) = AJ(J,N,4)
A(IHP+2,J,IP,N) = AJ(J,N,5)
A(IHP+3,J,IP,N) = AJ(J,N,6)

241 CONTINUE
240 CONTINUE

ENDIF vs
RETURN

C END OF XCTILB.
END

This version is longer than the others, because it allows multiple tiles per process and therefore
includes the autotasking version's logic as well as message passing logic. Multiple tiles per process
might be used on a SMP cluster, for example, with each process on a separate SMP machine-"
communicating with other processes on other machines via message passing but parallelizing across- '
multiple processors internally via autotasking. We will follow the usual convention of treating
process and processor as interchangable terms to mean a single message passing entity, even though -
such an entity may in fact be muliple autotasked processors. Message passing uses either the*
T3D's SHMEM library or the standard MPI library [13]. Several macros are used to enhance
portability. The macro "header" allows for a machine specific include file, "mtyper" allows for
machine specific REAL data type, "barrier" blocks until all processors execute it, and macro
"shmem_getr" allows for different subroutine names in T3D and SGI versions of the library. The
variables MPROC and NPROC identify the local processor, with respect to a 2-D mesh or processors, and
the array IDPROC contains the mapping from the mesh to processor number. IDPROC includes a halo
to simplify periodic shifts. So, IDPROC (MPROC, NPROC) is the processor number of this processor,
and its northern neighbour is processor number IDPROC (MPROC, NPR0C+1), etcetera. The processor
array is configured to periodic wrap in both dimensions. On small workstation clusters it might be
more efficient to skip the wrap when it isn't needed. SHMEM implements one sided communication,
and can get values in any static array from another processor, the SAVE statement makes AI and AJ
static. NLOM requires IHP and JHP to be even, so the first dimensions of AI and A J are also even.
This avoids performance problems that occur when the local and remote buffers are misaligned in
memory. The barrier before each shmem_getr call ensures that the buffer, AI or AJ, is up to date
on the remote processor before it is copied. In general, a barrier would also be required after the
copies to ensure the remote memory is not altered before it is copied. This is not required here,
because a total of two barriers are sufficient to protect two buffers (either a classic double buffer

it

. Q Wallcraß and Moore

or, as here, two independent buffers called in sequence). SHMEM is a particularly good match to
the tiled data parallel programming style, because global barriers can always be placed between
each stage of a data parallel algorithm allowing safe access to remote memory. The MPI version
is not necessarily optimal on a given machine, but it is a portable starting point for a machine-
specific MPI implementation. An optimized version might not use the buffers AI and AJ, which
are essential for SHMEM but represent potentialy unnecessary copy operations under MPI. The
subroutine MPI_SENDRECV is a simple way to implement a circular shift. It sends one set of values
to one processor while receiving another set from a second processor. Since both ends cooperate
in passing messages, there is no need for a global barrier. The default SPMD global communicator
MPI_C0MM_W0RLD is being used here. On some machines a communicator based explicitly on a 2-D

mesh might be more efficient.

3.4 Parallel I/O

NLOM is used on many machine types, so it is important that NLOM files be portable. This
is acomplished, in part, by using IEEE 754 32-bit floating point values for all I/O. Integer values
are converted to floating point, because integers can be either 32-bit or 64-bit and are hence non-
portable. To allow some degree of parallel I/O on distributed memory machines, separate files
are used for scalars and arrays. Scalar files are formatted or unformatted sequential, and array
files are Fortran direct access with one 2-D array (representing a single field for a single layer)'-pfer
record. Array I/O is performed via subroutine calls, which can do I/O in parallel provided the
resulting file is configured as required. On the Cray C90, an assign statement is used (actually an . .
ASNUNIT subroutine call) to configure for IEEE I/O. On DEC machines, the f77 compiler switch
"-convert big_endian" is used to make the files compatable with the majority of Unix systems
(DEC is little endian, but most others are big endian by default).

Our implementation of I/O is somewhat unusual, but a natural one for message passing SPMD' '
codes. All files are opened either READONLY or WRITEONLY. Scalar files are read independently by
all processors, but written by the first processor only. All processors can write to STDOUT, Fortran. '■■
unit 6, but reading from STDIN, Fortran unit 5, is not allowed because on some machines it is *
not available to all processors. Fortran units 0 and 7 are not used, because they can have default
bindings, to STDERR, which are not portable. Under a data parallel or autotasking compiler, scalar
code and scalar I/O do not see multiple processors and so all I/O is from the single program
instance. How array files are handled depends on the machine. Writing the entire array from the
first processor using direct access I/O always works, and is the only choice for single node and
autotasked cases. However, on distributed memory machines it requires all tiles to be message
passed to one processor. An alternative is to use direct access I/O from the first processor in each
row, reading/writing the entire rows's set of tiles as a single record. Each active processor is then
accessing a different, non-overlapping, record in the file. This is always safe for parallel reading
and is usually safe for parallel writing if the record length is a multiple of the disk block size. On a
data parallel machine, copying from a tiled (4-D) array to a native (2-D) array and then using data
parallel I/O is an option. In general, any method that reads/writes the standard file is allowed.
There are several efforts underway to produce standards for parallel I/O, but it is not yet clear if
any of them will be compatable with serial I/O. The NLOM technique maintains portability, but
does not necessarily allow maximum parallel I/O performance. This is acceptable, because NLOM
spends much more time computing than doing I/O. Using two files, scalar and array, to hold values
is less robust than mixing them in the same file. We must rely on file name association to tell us

Scalable NLOM . —

which scalar file goes with which array file, but it is not generally possible to do portable parallel
I/O on files than mix scalars and arrays. Array files contain all land points. They can be reduced
in size, after the fact, either by standard file compression techniques, e.g. via the gzip command,
or run length encoding of land points via the NLOM-specific command lzip, or by converting them
to the original NLOM history file format (a 24-bit fixed point value file containing no land values

at all).

3.5 Serial Optimizations

The original implementation of NLOM was optimized for multi-processor vector machines, such
as the Cray C90. Its performance on RISC microprocessor based workstations and SMP servers
was of less importance. RISC-based systems now represent a much more significant fraction of the -
high performance computing field. So, the scalable NLOM implementation must be nearly optimal
over a wider range of machines, including both vector and RISC processors. Vector machines can
be characterized as having no cache and a very high memory to processor bandwidth. Arrays are f \
often used to hold temporaries, and a non-unit stride through an array can be efficient unless the
stride is a large power of two (e.g. 64 or 128). RISC-based machines always include a cache, often
a multi-level cache, and have a low memory to cache bandwidth. Non-unit strides through an array
can be expensive, unless the required elements are already in cache.

With the exception of the Helmholtz's equation solvers, described in section 3.7, the original
NLOM code structure was already sufficiently clean to optimize well on RISC systems. There
were no unnecessary non-unit strides through arrays, and the loop nests were simple enough for the
compiler to automatically unroll most inner loops. Loop unrolling is essential for good performance
on a RISC machine, and a few loops had to be unrolled by hand, with the original code retained -
for vector machines via cpp logic, when one or more compilers.failed to recognize the possibility- -
of unrolling. A few array temporaries have been replaced by scalars, but the original NLOM code- -
typically used array temporaries, rather than scalars, only when they reduced the operation count.
So most array temporaries have been retained. Using 32-bit REAL's effectively doubles the cache.-.
size and the memory to cache bandwidth. This provides a performance boost even on machines •
that run at the same speed for 32-bit and 64-bit floating point arithmetic. All ocean models should
be able to use 32-bit IEEE 754 REALs for most calculations.

Division is always expensive, but it is particularly costly on some RISC systems. NLOM already
performed the minimum possible number of divisions. The IEEE 754 floating point arithmetic . .
standard does not allow division to be replaced by multiplication by a reciprocal. A compiler that f*
strictly enforces this requirement could not replace:

DO 1= 1,N
A(I) = B(I)/C

ENDOD

with:

RC = 1.0/C

DO 1= 1,N
A(I) = B(I)*RC

ENDOD

2Q Wallcraft and Moore

even though the latter might be ten times faster. This is one of the few situations where it is still
advantageous for a programmer to promote loop independent calculations to outside the loop.

Codes optimized for vector, or data parallel, machines tend to make liberal use of simple vector
operations, such as Y=X, Y=0.0, and Y=Y+X. These are relatively inexpensive on vector machines, but
can take a significant amount of time on machines with a low memory bandwidth. The obvious first
step is to remove unnecessary operations of this sort. However, good programming practice and
numerical accuracy considerations have lead to many such operations being retained in NLOM. So
they have optionally been replaced by calls to optimized BLAS, Basic Linear Algebra Subroutines
[10], where available. The BLAS were designed only to support the needs of linear algebra, and
not all the required vector operations are included. Moreover, many vendors do not optimize the
original level-1 (vector-vector) BLAS, because vector lengths are short in linear algebra. Level-2
(matrix-vector) BLAS [4] and level-3 (matrix-matrix) BLAS [5] have more room for optimization
and are more important to modern linear algebra applications. There is a need for a standardized
vector library to facilitate the porting of codes from vector to RISC architectures. This could be
implemented in assembly language, if necessary, for each RISC architecture. For ocean models, a
level-2 BLAS extension, subroutine SGESUMC, implementing the matrix (2-D array) operation "B
= alpha*op(A) + beta*B + gamma", where op(A) is either A or its transpose, would be sufficient
to cover most simple vector operations (provided cases where the scalars alpha, beta, and gamma
are zero or one are treated optimally). Cray has a similar BLAS extension, SGESUM, on the T3D
only. To illustrate that Fortran compilers do not produce optimal code for simple vector operations,
consider two implementations of the same subroutine. First, the obvious Fortran version.

SUBROUTINE R4WSET(S,tf,N)

IMPLICIT NONE

INTEGER N

REAL*4 S(N),W

C
C S = W.

C
INTEGER I

C
DO 1= 1,N

S(I) = W

ENDDO

RETURN

END

Then, a version that is often faster on RISC systems.

SUBROUTINE R4WSET(S,W,N)

IMPLICIT NONE

INTEGER N

REAL*4 S(N),W

C

C S = W.

C

r I

f 1

it

INTEGER LOC

INTEGER IS1

Scalable NLOM ?!

REAL*8 W8(l)
REAL*4 W4(2)
EQUIVALENCE (W8,W4)

W4(l) = • W
W4(2) = ■■ w
IS1 = LOC(S(D)
IF (M0D(IS1,8) EQ 0) THEN

CALL R8WSET(S(1) W8.N/2)

S(N) = W
ELSE

S(l) = W
CALL R8WSET(S(2) W8 (N-D/2)
S(N) = W

ENDIF
RETURN
END

The second version uses the non-standard LOC function to return the address of S(l) in bytes,
and hence to select S(l) or S(2) as a legal REAL*8 pointer. It then calls a REAL*8 version of tfte
subroutine with a REAL*8 constant containing two copies of W and about half the original vector
length. This version is not standard Fortran 77, but it is significantly faster than the original on
many machines because the memory bandwidth is higher for 8-byte memory writes than for 4-byte
writes. Presumably, an assembly language version of R4WSET could be faster still. The scalable
NLOM code includes the option of using optimized BLAS and 64-bit vs 32-bit optimizations when
appropriate, but a standard vector library optimized for each machine would simplify NLOM logic .
and further improve performance.

3.6 Cache Management ;. ?■

All ocean models are intrinsically memory intensive. The ratio of floating point operations to
memory accesses is small, and all array elements are accessed at least once every one or two time
steps. The previous section discussed essentially local optimizations. This section is concerned with
global code restructuring for better cache performance. On a SGI Power Challenge, with a 4 MB
secondary cache, a very small NLOM test case runs at 103 Mflops/s but a more realisticly sized case ■ i
runs at only 39 Mflop/s. The two cases were not exactly comparable, but since the small case is s

running almost entirely cache contained it does place an upper bound on what cache optimizations
can do. The NLOM code slabs on layers, i.e. all lower level routines deal with a single layer and
the loop over all layers is outside these routines. Moreover, each low level routine implements a
relatively small and self contained operation, for example there are separate routines for advection
and diffusion, and there are several involved in calculating pressure gradients. This programming
style is flexible and easy to maintain, but it does require more passes though each set of layer
arrays than is strictly necessary. Layer slabs are large and don't typically fit in cache, so low level
single layer subroutines are not optimal for cache management. A monolithic programming style
where all the finite difference operations for a time step were performed by one big loop (or a small
number of loops), would maximize locality of reference, but compilers don't always perform well
when optimizing very complicated loops and large loops are difficult to maintain.

22 Wallcraß and Moore

In principle, the message passing version of NLOM should already be configurable for optimal
cache management. All that is required is to set the tile size so that a complete set of arrays for
a single layer fit in cache. This would typically result in more tiles, and therefore processes, than
physical processors. If these processes could be optimally scheduled by the operating system and if
the per process message passing overhead were small, we would have a near optimal configuration
with good cache performance. However, most message passing libraries assume there is one dedi-
cated processor for each process and Unix time slices all processes and schedules them in a round
robin (which is far from optimal). Optimal scheduling would consist of each process continuing to
run on a physical processor until it blocks, at a barrier or a message passing operation, at which
point it sleeps and another process takes over until it blocks, etcetera. A similar scheduling scheme
is available, and works well, for some thread libraries [11], but schemes that work for light weight
threads may be impractical for heavy weight processes. The direct use of threads, with one thread
per tile, would allow better scheduling and might in fact lead to the fastest possible implementation
on those SMP machines that support the mapping of many threads onto fewer processors. However,
threads are not a natural fit to the SPMD programming style, and a combination of threads and
message passing would be required when running across a cluster of SMP systems. Autotasking
makes use of threads on many machines and, even if autotasking uses heavy weight processes,
the master-slave algorthm used to parallelize DO-loops provides near optimal scheduling. What
is required is to move the tile loops out of low level subroutines, and call as many subroutines,as
possible within each autotasked tile loop. However tile loops cannot contain calls to communication
routines. In pseudo-code, for IP=1, this might look like:

DO N= 1,JP
! LOW LEVEL ROUTINES HANDLE A SINGLE TILE, HENCE (1,1,1,N).
CALL SUBl(DU(l,l,i,N), U(l,1,1,N,NT0,K),)
CALL SUB2(DV(1,1,1,N), H(l,1,1,N,NT0,K),)
CALL SUB3(VV(1,1,1,N), V(l,1,1,N,NT0,K),)
CALL SUB4(UV(1,1,1,N), U(l,1,1,N.NTO.K),)

ENDDO
CALL XCTILB(VV) ! COMMUNICATION ROUTINES HANDLE ENTIRE ARRAYS = .
CALL XCTILB(UV) ! AND STILL CONTAIN INTERNAL DO N= l.JP LOOP '.»
DO N= l.JP

CALL SUB5(DV(1,1,1,N), VV(1,1,1,N),V(1,1,1,N,NT0,K))
CALL SUB6(DV(1,1,1,N), VV(1,1,1,N),H(1,1,1,N,NT0,K),)

ENDDO

As it stands, this is not data parallel unless SUB1 to SUB6 are treated as HPF EXTRINSIC subroutines
and these, while part of the standard language, are unlikely to be portable. However, compatability
with data parallel can be maintained by using cpp macros to configure the same code to put tile
loops either inside or outside low level routines. Compiler directives would typically be needed
to force autotasking on these N loops, because the compiler would otherwise have to assume the
subroutine calls were not thread safe.

Tile loops outside low level routines can also improve cache performance on a single processor.
So a generic advantage of tiled data parallel over tiled message passing is that each clustered system
can run a single program that itself handles multiple tiles, either to improve cache performance on a
single processor, or to use multiple shared memory processors via autotasking. Hybrid paralleliza-
tion techniques, such as autotasking plus message passing, are likely to be increasing important in
the future, due to the growing popularity of SMP clusters.

! !

it

Scalable NLOM 23

The NLOM implementation does not currently support tile loops outside low level subroutines.
A test case that simulated such loops without the synchronization required for communication
routines, i.e. a best case test, ran 35% faster on a SGI Power Challange, but only 19% faster on
a Sun SPARCstation 20, compared to the standard scalable code. A test case that was entirely
cache contained but performed equal work, ran 55% and 29% faster than the standard case on
SGI and Sun machines respectively. So there is some overhead whenever the model is larger than
the cache, but a version with high level autotasked loops might perform significantly better than
autotasking at the lowest loop nest level. The difference in speedup on the Sun and SGI is due
to the relatively better balance between memory and cache bandwidth on the Sun. The existing
generation of multi-processor servers, like the SGI Power Challange, typically use a shared memory
bus that does not scale well as more processors are added. The next generation of servers are more
likely to use memory crossbar switches, which have better bandwidth and scalability properties, _
and should therefore have less need for agressive cache optimization.

3.7 Parallelizing the Capacitance Matrix Technique i f

The NLOM gets its intrinsic efficiency from the use of Lagrangian layers in the vertical and
a semi-implicit treatment of gravity waves. A semi-implicit model treats a linearized pressure
gradient implicitly within an otherwise explict model. The time step is then independent of gravity
wave speed, but the continuity equation becomes 3-D elliptic. The NLOM is designed so thatvthe
3-D elliptic equation can be transformed to modal space, where it becomes a decoupled set of 2-D
Helmholtz's equations (one per mode) [15]. The internal modes equations can each be solved with 4 . .
to 10 iterations of Red-Black SOR, a classical iterative method with good scalabilty properties, but ;:'
the single external mode equation is less well conditioned and is solved by the Capacitance Matrix [■•
Technique, CMT. Since explicit finite difference code is highly scalable, the overall scalability of
NLOM depends on how scalable the CMT solver is. The fully scalable alternative to a semi-implicit - -
time step is a split-explicit scheme that uses a smaller time step for the external gravity mode only.- -
The split-explicit scheme is not competitive with semi-implicit on a single processor, because of
its much higher operation count, but its superior scalability makes it relatively more efficient on a ;.
large number of processors. Thus our initial design goal was to make the CMT sufficiently scalable *
so that the semi-implicit model would out perform an equivalent split-explicit version. This goal
has been exceeded, and NLOM is certainly still the most efficient existing basin-scale ocean model
on any machine with up to hundreds of processors or even, if the problem is large enough, a few
thousand processors.

The CMT [3], is a method for extending fast direct solvers for Helmholtz's equation over a ■*■«
separable region, such as a rectangle, to arbitrary bounded regions. Perhaps the simplest fast direct
method is now usually called FACR(O) [6]. For an IH by JH rectangle, it involves JH independent
forward FFT's each of length IH, followed by IH independent solves of tridiagonal systems of length
JH, and finally JH independent reverse FFT's of length IH. The CMT involves a FACR(O) solve,
followed by a boundary correction via the solution of a dense set of linear equations at boundary
points, and finally a FACR(O) solve to apply the correction to the entire region. The Capacitance
matrix contains every boundary node that is inside the rectangle, and so it can be very large. For
a l/32nd degree global region it is about an 100,000 by 100,000 matrix. However the matrix is not
time dependent, so it can be inverted once per region and then one matrix-vector multiply used
to solve the system every time step. The memory required for the Capacitance matrix is large,
but its per time step cost is low and highly scalable. Thus the scalability of CMT depends on the

24 Wallcraft and Moore

scalability of FACR(O).

There are two basic classes of solution methods for any operation that requires non-local com-
munications. In distributed methods, the operation is performed in place with any non-local com-
munication forming part of the solution process. In transpose methods, the layout of the array
across processors is rearranged so that the operation itself requries no additional communication.
Here transpose is used in a more general sense than normal, although on a SMP system the most
common form of array layout rearrangement is the classical matrix transpose. Distributed methods
typically involve passing short messages, with the possibility of overlapping computation with com-
munication. Transpose methods typically involve passing long messages during a communication
phase, which is separate from the computation phase. On the CM5, NLOM uses calls to the vendor
provided CMSSL scientific library to perform FFT's and tridiagonal solves. These implement a . -
distributed solution method, but the NLOM arrays must be converted, i.e. transposed, from tiled
to non-tiled form before calling the CMSSL routines and then converted back to tiled form after-
wards. Most scalable system vendors do not provide their own parallel, i.e. distributed, scientific f •
library. So NLOM generically implements FACR(O) by first transposing from a 2-D processor grid
to a 1-D grid, such that each of the independent FFT's are resident on one processor. This allows
an optimized single processor FFT routine to be used. The tridiagonal solve could be implemented
by doing a second transpose to a 1-D grid on the other array dimension, but NLOM instead uses
a distributed algorithm to save the cost of the transposes. After the tridiagonal solve, the array
is still in the 1-D layout that is optimal for the reverse FFT's. A FACR(O) implementation would
normally be completed by a transpose from 1-D back to the standard 2-D array layout, but as _ ;.
part of the CMT implementation the reverse transpose after the first FACR(O) and the forward
transpose before the second FACR(O) are not necessary. j\

The tridiagonal solver needs to solve IH independent systems each of which is JH long and' -
distributed across all P=NP*MP processors. For simplicity, NLOM normally requires that JH be- ■-
a multiple of P. Using the "burn at both ends" (BABE) solution method doubles the available
parallelism, and a data parallel implementation of pipelining is used as the primary distributed ;
algorithm. Pipelining works by passing the results from solving a subset of the systems onto the •
next tile before continuing with the rest. In the first pass, start by solving the first L systems
on processors 1 and P with processors 2 to P-l idle. In the second pass, processors 2 and P-l
can work on the first L systems (using the results of the first pass) while processors 1 and P work
on the second L systems with processors 3 to P-2 idle. The subsequent passes are similar, but
eventually processors (starting with 1 and P) run out of work, and go idle waiting for the rest of
the processors to complete. Overall, there are IH/L+P/2-1 passes and each processor is idle on U
P/2-1 of them. Parallelization overhead is therefore theoretically minimized when L=l, but this is
not optimal from a vectorization or message passing overhead standpoint. The optimal L can be
determined experimentally, it is typically between 16 and 64 with higher values being appropriate
for vector machines and for message passing over high latency networks. An important property of
pipelining is that each tridiagonal system is solved using exactly the same operations, in exactly the
same order, no matter how many processors, or tiles, are involved. This contributes to the overall
invariance of the portable CMT implementation to the number of processors used. Maintaining
processor independance leads to a much more robust code that is easier to debug. This is one
reason for avoiding vendor provided distributed routines. In fact, the CM5 version of NLOM does
not maintain exact processor independance because it uses CMSSL FFT and tridiagonal solver
routines and CM Fortran array sum intrinsics. In this case exact invariance has been given up to

Scalable NLOM 25

obtain acceptable performance.

The portable scalable CMT solver includes two different Fortran 77 FFT implementations,
one primarily for vector machines and the other for RISC processors. On many systems a vendor
provided FFT routine would be used instead. The primary disadvantage of transposing to a 1-D
tiling is that it requires the second array dimension, JH, to be an integer multiple of the number
of processors. This can place an unacceptably low limit on the maximum number of processors,
so NLOM allows the CMT rectangle, IH by JHS, to be larger than the standard model rectangle,
IH by JH. Using JHS larger than JH makes the transpose operations more expensive, but is usually
faster overall than the alternative of increasing JH for the entire model. The transpose-based CMT
solver appears to be scalable to at least 2048 nodes for a large enough region size. Scalability has
actually been demonstrated on up to 128 T3D nodes, and up to 1024 CM5 vector units (using dis-
tributed FFTs). A semi-implicit time step, using CMT and red-black SOR to solve the Helmholtz's
equations, is still the fastest available time stepping scheme for scalable ocean models.

4. NLOM PERFORMANCE

Our canonical test case is a six layer hydrodynamic finite depth 1/2 degree global model run
for one year with the typical amount of I/O and data sampling. This is a relatively small problem,
512 by 288 by 6, as it has to be to allow multiple runs measuring scalability. The following tabte
shows times for this case on several computer systems.

Ta ble 1 - Performance of NLOM on existing HPC plati brms
MACHINE PARALLEL

METHOD
NUM.

NODES
TIME MFLOP/S SPEEDUP

Cray C90 NONE 1 1.36 hrs 355 (REAL*8)

SGI R8000 NONE 1 9.63 hrs 50 (90 MHz)

SGI R8000 AUTOTASK 2 4.91 hrs 98 1.96x 1 node

SGI R8000 AUTOTASK 4 2.47 hrs 195 1.99x 2 nodes

SGI R8000 AUTOTASK 8 1.46 hrs 331 1.69x 4 nodes

SGI R8000 AUTOTASK 16 1.08 hrs 447 1.35x 8 nodes

Cray T3D SHMEM LIBR. 4 5.15 hrs 94

Cray T3D SHMEM LIBR. 8 2.70 hrs 179 1.91x 4 nodes

Cray T3D SHMEM LIBR. 16 1.41 hrs 342 1.91x 8 nodes

Cray T3D SHMEM LIBR. 32 0.81 hrs 596 1.74x 16 nodes
Cray T3D SHMEM LIBR. 64 0.49 hrs 985 1.65x 32 nodes

TMC CM5E DATA PARAL. 32 1.56 hrs 309
TMC CM5E DATA PARAL. 256 0.65 hrs 743 2.40x 32 nodes

On the Cray C90, Mflop/s are measured using the hardware performance monitor. Mflop/s on
all other machines are based on the Cray figure, and therefore ignore any additional work performed
to improve scalability.

The 1/2 degree model is relatively small. We have demonstated scalability on up to 256 nodes
on a CM5E for larger problems. For example, a 32-node CM5E is 0.87 times as fast as a C90
processor on the above 1/2 degree model but at l/8th degree a 256-node CM5E is 9.3 times faster
than a C90 processor. In this case eight times as many nodes are 10.7 times faster, when the
problem size is increased by a factor of sixteen.

if

26 Wallcraft and Moore

processors * v

Fig. 1 - Wall time for the 1/2 degree test case on a SGI Power Challenge, compared to 98% parallelization curve

120000

100000

80000

E
= 60000

40000

20000

i B -o

-*
_i

" Q

 ■X-TJ'—

16
processors

32 64

It

Fig. 2 - Total CPU time for the 1/2 degree test case on a Cray T3D: (a) entire model, (b) theoretical 99.2% parallel
curve, (c) explicit finite difference code, (d) SOR solver, (e) CMT solver, (f) overhead.

Scalable NLOM 27

14000

12000

 1 , 1

cmt -e—
gemv -■<—

ffl -□•-
tri -x—2

comm -*?*
rest/*—

10000 /

8000 -

6000 - -

4000

2000
I !

■t
n!
 f -*:~~.:~-&. *

16
processors

32 64

Fig. 3 - Total CPU time spent in CMT solver on a Cray T3D: (a) entire solver, (b) matrix-vector multiply, (c) |TT,
(d) tridiagonal solver, (e) 2-D/l-D transposes, (f) other.

Figure 1 plots wall time against number of processors for the test case on a SGI Power Challenge.
This is a close fit to Amdahl's Law for 98% parallelization. The measured performance drops below
the theoretical curve for 16 processors. This could either be due to load imbalance or to a lack of
memory bandwidth. Figure 2 plots total time against number of processors for the test case on-..
a Cray T3D. Divide total time by the number of processors to" get wall time. Perfect scalability,
would produce a horizontal curve. The model is 99.2% parallel. The explicit finite difference code
is essentially 100% parallel, as expected. The SOR and CMT solvers take about 18% and 9%,,
respectively, of the total time and show good scalability. All the rest of the model, the overhead,,
represents 5% of the total on 4 nodes but 24% on 64 nodes.

Figure 3 plots total time against number of processors for the test case CMT solver on a Cray
T3D. The large jump in total time on 64 nodes is primarily due to the fact that this solver is
based on a 512 by 384 element array, rather than the model's 512 by 288 array. The original array
can't be used on 64 nodes because 288 is not a multiple of 64. As expected, the matrix-vector
multiply and FFT phases are 100% parallel. The transposes between ID and 2D are a relatively
small percentage of the total solver time, and show good scalability. The pipelined tridiagional
solver has some load inbalance (from the pipelining) and many short off-chip transfers. Even so,
scalability is quite good. The rest of the CMT solver has a very small operation count, but requires
communication and is the factor that limits the overall scalability of the solver as a whole. Figure
4 plots total time against number of processors for the test case SOR solver on a Cray T3D. As
usual, the finite difference code is 100% parallel. The halo updates are not perfectly scalable, but
are a small fraction of the total even on 64 nodes. The calculation of the L2 norm of the residual
requires global communication, and is the factor that limits the overall scalability of the solver as
a whole. The requirement that the model be bit-for-bit reproducable on an arbitrary number of
processors prevents us from using the fastest global sum algorithms.

H

28 Wallcraft and Moore

Fig. 4 - Total CPU time spent in SOR solver on a Cray T3D: (a) entire solver, (b) finite difference code, (c) halo
updates, (d) 12 norm.

E
3
Q.

16
processors

32 64

a

Fig. 5 - Percentage of total CPU time spent in major overhead tasks on a Cray T3D: (a) ports, (b) halo updates, (c)
land boundary conditions, (d) friction patches.

Scalable NLOM 29

E

a.

3.5

2.5

0.5- —

tile -e—
mass -i—

sampl •□--.-■
I/O -*•/

16
processors

32 64

Fig. 6 - Percentage of total CPU time spent in minor overhead tasks on a Cray T3D: (a) halo updates, (b) mas,s
calculations, (c) data sampling, (d) I/O.

Figure 5 plots the percentage of total time against number of processors for the major overhead"
tasks on a Cray T3D. These are all involved in boundary condition processing. Conventional'
boundary condition processing, for no-slip coastlines and zeroing out land areas, scales well and is
only about 1% of the total time. Halo updates scale less well, but are only 3% of the total time on.
64 nodes. The global region has many friction patches to control flow through straits that are no«
well resolved on the model grid. These are less scalable than halo updates, but also represent only
3% of total time on 64 nodes. By far the largest factor in overall scalability are the port boundary
conditions. These are applied at 65N in the Atlantic to simulate the effects of the GINSea, which
is not included in the model, and in particular to drive the global thermohaline circulation. The
operation count for the ports is very small, but it is all "serial" code and therefore 0% scalable.
Additional optimization of port routines is planned for the next release of NLOM. Figure 6 plots
the percentage of total time against number of processors for the overhead tasks on a Cray T3D
that are not on figure 5. The halo update curve is on both figures as a point of reference. The
model's formulation of mixing requires the calculation of the region-wide mass for each layer every
time step. This is similar to the L2 norm calculation in the SOR solver, with similar scalability
properties, but is only 1.4% of the total time on 64 nodes. Data sampling is performed every few
days throughout the simulation, to produce statistics on transport across sections, mixing in sub-
regions, etcetera. The operations are not very scalable, but are relatively infrequent and represent
only 2.5% of the total time on 64 nodes. The model writes out a restart record containing all
prognostic variables every month. In principle, this I/O is performed in parallel on the T3D but
scalability is poor. The decrease in time from 4 to 8 processors is due to the fact that smaller
buffers had to be used on four processors because of memory constaints.

30
Wallcraft and Moore

5. SUMMARY

The scalable NLOM implementation has achieved its design goals of running exactly the same
model source code and model data files on a wide range of computer systems from many vendors.
Scalability is based primarily on the tiled data parallel parallel programming paradigm. This is
sufficiently general that the actual technique used on a given machine to obtain scalability can be
selected at compile time from: (i) data parallel, (ii) SPMD message passing, (iii) autotasking, or (iv)
SPMD message passing between multi-processor autotasked systems. Times from actual practical
model runs presented in this report demonstrate good scalability across the range of processor
complexes available within DoD today. As larger machines become available, problem sizes (i.e.
model resolution) will increase and scalability should be possible up to at least 2048 processors.

6. ACKNOWLEDGEMENTS

This is a contribution to the 6.2 Global Ocean Prediction System Modeling Task. Sponsored f \
by the Office of Naval Research under Program Element 62435N. Also to the Common HPC Soft-
ware Support Initiative project Scalable Ocean Models with Domain Decomposition and Parallel
Model Components. Sponsored by the DoD High Performance Computing Modernization Office.
The benchmark simulations were performed under the Department of Defense High Performance
Computing initiative, on (i) two Thinking Machines CM5Es at the Naval Research Laboratory,
Washington D.C., (ii) a Cray C90 at the Naval Oceanographic Office, Stennis Space Center, Mis-
sissippi, (iii) a SGI Power Challenge at Waterways Experiment Station, Mississippi, and (iv) a Cray _ _ <:.
T3D at the Arctic Research Supercomputer Center, Alaska.

7. REFERENCES

1. Amdahl G.M. (1967), Validity of the single processor approach to achieve large scale computing-
capabilities. Proc. AFIPS Spring Joint Corn-put. Conf., 30, pp 483-485.

2. Bleck R., S. Dean, M. O'Keefe, A. Sawdey (1996). A comparison of data-parallel and message ;
passing versions of the Miami Isopycnic Coordinate Ocean Model (MICOM). Parallel Comput-

ing, to appear.

3. Buzbee, B.L. F.W. Dorr, L.A. George, G.H. Golub (1971). The direct solution of the discrete
Poisson equation on irregular regions. SIAM J. Num. Anal, 8, pp 722-736.

4. Dongarra J.J., J.J. Du Croz, S.J. Hammarling, R.J. Hanson (1988). An extended set of Fortran , .-
basic linear algebra subprograms. ACM Trans. Math. Software, 14, pp 1-17.

5. Dongarra J.J., J.J. Du Croz, I.S. Duff, S.J. Hammarling (1990). A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Software, 14, pp 1-17.

6. Hockney R.W. (1965). A fast direct solution of Poisson's equation using Fourier Analysis.
J.Assoc. Comput. Mach., 12, pp 95-113.

7. Hockney R.W. (1996). The science of computer benchmarking. SIAM Press.

8. Hurlburt, H.E.'fe J.D. Thompson (1980). A numerical study of Loop Current intrusions and
eddy shedding. J.Phys. Oceanogr., 10, pp 1611-1651.

9. Koelbel OH., D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., M.E. Zosel (1994). The High
Performance Fortran handbook. MIT Press.

Scalable NLOM E

10. Lawson, C.L., R.J. Hanson, D.R. Kincaid, F.T. Krogh (1979). Basic linear algebra subprograms
for Fortran usage. ACM Trans. Math. Software, 5, pp 308-323.

11. Lewis B. & D. J. Berg (1996). Threads primer. A guide to multithreaded programming. SunSoft

Press. Prentice Hall.

12. Moore, D.R. & A.J. Wallcraft (1996). Formulation of the NRL Layered Ocean Model in Spher-
ical Coordinates. NRL Contractor Report 7323-96-0006 (submitted).

13. Snir M., S.W. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra (1996). MPT. the complete

reference. MIT Press.

14. Piacsek, S.A., A.J. Wallcraft (1993). Initial experiences with the Connection Machine at NRL.
NRL Technical Note 73-5089-03.

15. Wallcraft, A.J (1991). The Navy Layered Ocean Model users guide. NOARL Report 35. Naval
Research Laboratory, Stennis Space Center, MS, 21 pp.

i i

M

